Synthesis of High‐Quality Graphene and Hexagonal Boron Nitride Monolayer In‐Plane Heterostructure on Cu–Ni Alloy
نویسندگان
چکیده
Graphene/hexagonal boron nitride (h-BN) monolayer in-plane heterostructure offers a novel material platform for both fundamental research and device applications. To obtain such a heterostructure in high quality via controllable synthetic approaches is still challenging. In this work, in-plane epitaxy of graphene/h-BN heterostructure is demonstrated on Cu-Ni substrates. The introduction of nickel to copper substrate not only enhances the capability of decomposing polyaminoborane residues but also promotes graphene growth via isothermal segregation. On the alloy surface partially covered by h-BN, graphene is found to nucleate at the corners of the as-formed h-BN grains, and the high growth rate for graphene minimizes the damage of graphene-growth process on h-BN lattice. As a result, high-quality graphene/h-BN in-plane heterostructure with epitaxial relationship can be formed, which is supported by extensive characterizations. Photodetector device applications are demonstrated based on the in-plane heterostructure. The success will have important impact on future research and applications based on this unique material platform.
منابع مشابه
Opening of triangular hole in triangular-shaped chemical vapor deposited hexagonal boron nitride crystal
In-plane heterostructure of monolayer hexagonal boron nitride (h-BN) and graphene is of great interest for its tunable bandgap and other unique properties. Here, we reveal a H2-induced etching process to introduce triangular hole in triangular-shaped chemical vapor deposited individual h-BN crystal. In this study, we synthesized regular triangular-shaped h-BN crystals with the sizes around 2-10...
متن کاملSynthesis of in-plane and stacked graphene/hexagonal boron nitride heterostructures by combining with ion beam sputtering deposition and chemical vapor deposition.
Graphene/hexagonal boron nitride (h-BN) heterostructures have attracted a great deal of attention in recent years due to their unique and complementary properties for use in a wide range of potential applications. However, it still remains a challenge to synthesize large-area high quality samples by a scalable growth method. In this work, we present the synthesis of both in-plane and stacked gr...
متن کاملGraphene-Hexagonal Boron Nitride Heterostructure as a Tunable Phonon–Plasmon Coupling System
The layered van der Waals (vdW) heterostructure, assembled from monolayer graphene, hexagonal boron nitride (h-BN) and other atomic crystals in various combinations, is emerging as a new paradigm with which to attain desired electronic and optical properties. In this paper, we study theoretically the mid-infrared optical properties of the vdW heterostructure based on the graphene–h-BN system. T...
متن کاملTemperature-triggered chemical switching growth of in-plane and vertically stacked graphene-boron nitride heterostructures
In-plane and vertically stacked heterostructures of graphene and hexagonal boron nitride (h-BN-G and G/h-BN, respectively) are both recent focuses of graphene research. However, targeted synthesis of either heterostructure remains a challenge. Here, via chemical vapour deposition and using benzoic acid precursor, we have achieved the selective growth of h-BN-G and G/h-BN through a temperature-t...
متن کاملA hybrid MBE-based growth method for large-area synthesis of stacked hexagonal boron nitride/graphene heterostructures
Van der Waals heterostructures combining hexagonal boron nitride (h-BN) and graphene offer many potential advantages, but remain difficult to produce as continuous films over large areas. In particular, the growth of h-BN on graphene has proven to be challenging due to the inertness of the graphene surface. Here we exploit a scalable molecular beam epitaxy based method to allow both the h-BN an...
متن کامل